

RCMS460-D/-L RCMS490-D/-L

Mehrkanalige, pulsstrom- und allstromsensitive Überwachung von

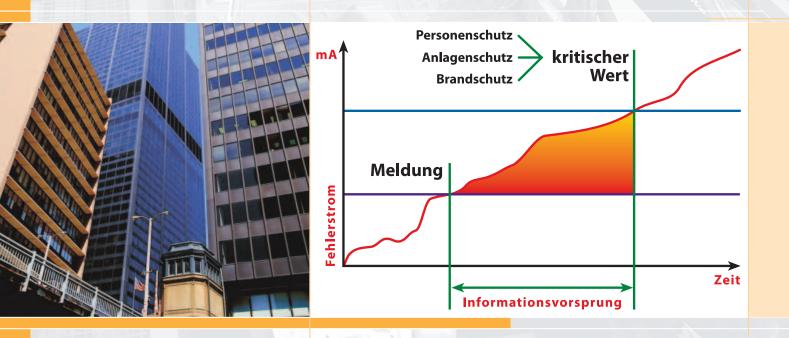
- Differenzströmen
- Fehlerströmen
- Betriebsströmen
- Vagabundierenden Strömen
- N-Leiterströmen

Mit Sicherheit Spannung

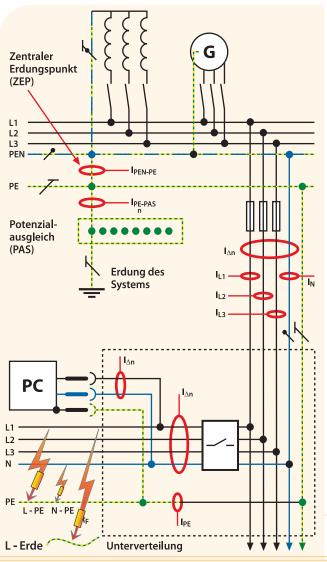
RCMS für mehr elektrische Sicherheit... denn ein Anlagenstillstand ist teuer

Täglich internationale Geschäftstätigkeiten, permanenter Wettbewerbs- und Kostendruck und umfassende Betriebsbereitschaft rund um die Uhr – dies fordert heute ein Höchstmaß an elektrischer Sicherheit in der Stromversorgung von Industrie-, Wohn- und Zweckgebäuden. Überwachen Sie mit dem RCMS-System permanent sicherheitsrelevante Stromkreise an den entscheidenden Stellen Ihres Unternehmens. Sie erhalten frühzeitige Information über sich anbahnende kritische Werte und vermeiden damit mögliche

- Personengefährdungen
- Brandgefährdungen
- EMV-Störungen


und senken deutlich Kosten, die durch Ausfälle in der Produktion, Störungen im EDV-Bereich oder zeitintensive Serviceeinsätze verursacht werden. Sorgen Sie mit dem RCMS-System für eine effektive Schadensprophylaxe, gesteigerte Produktivität und optimierte Instandhaltung. Das neue, modulare RCMS-Baukastensystem ermöglicht die Realisierung individueller Sicherheitslösungen und bietet damit eine hohe Investitionssicherheit.

Informationsvorsprung – ein wichtiger Erfolgsfaktor


Moderne Verbraucher, wie geregelte Antriebe oder PC-Schaltnetzteile erzeugen Fehlerströme, die mit der guten, alten Sinusform nichts mehr gemeinsam haben. Ein breites Oberwellenspektrum und unterschiedlichste Kurvenformen sind heute in jedem Netz vorhanden. Die Lösung: allstromsensitive bzw. Echt-Effektivwertmessung und die Analyse der Harmonischen – das RCMS-System macht beides.

Zeitvorsprung

Der Einsatz moderner Prozessortechnik, empfindliche Produktionsabläufe, zeitkritische Schalthandlungen erfordern oftmals eine sofortige Reaktion auf kritische Situationen. RCMS meldet Ströme in Rekordzeit – bis 1080 Kanäle innerhalb 180 ms.

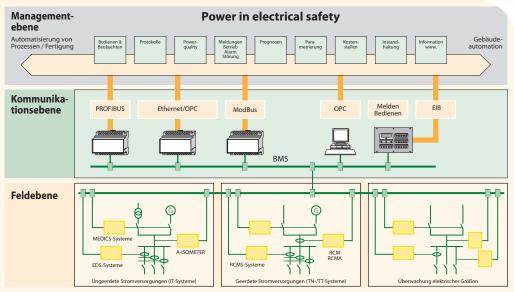
RCMS überwacht alle Ströme – individuell für Ihre Anforderungen

Vorbeugende Instandhaltung, erhöhte Verfügbarkeit und zentrale Überwachung. Das RCMS-System arbeitet an allen wichtigen Stellen in Ihrem Unternehmen und sorgt so für ein Höchstmaß an elektrischer Sicherheit. Das Baukastensystem passt sich optimal an die Gegebenheiten der Anlage an. Nicht zuviel, nicht zuwenig – so dass es genau Ihren Anforderungen entspricht.

I_{PEN-PE} Strom in der PEN-PE Brücke

I_{PE-PAS} Strom von Potenzialausgleichschiene

I_{L...} Betriebsstrom

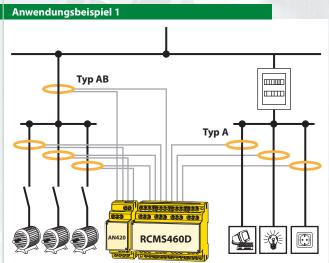

I_N Strom N-Leiter

I_{PF} Strom Schutzleiter

I_{AN} Fehlerstrom (Differenzstrom)

Power in electrical safety

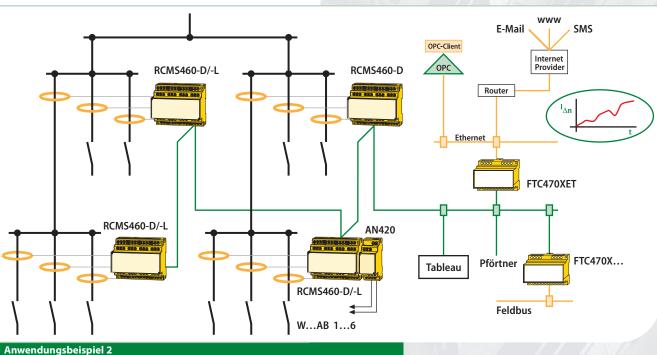
Mit "Power in electrical safety" bietet BENDER durchgängige Lösungen und Dienstleistungen für die elektrische Sicherheit in der Energieverteilung und Automation. "Power in electrical safety" bedeutet aufeinander abgestimmte Produkte, Systeme sowie flexible Schnittstellen zu modernen Kommunikations- und Informationsstrukturen in der Industrie- und Gebäudeautomation.


Betriebsstörungen durch Fehlerströme vermeiden

Störung	Mögliche Ursache	Wichtigste Auswirkung	Mögliche Lösungen
Betriebsstrom — Überstrom	VersorgungsnetzÜberlastung von VerbrauchernEinschalten von großen LastenZusammenschalten von Anlagenteilen	 Überlastung von Kabeln und Leitungen Ansprechen von Schutzeinrichtungen Produktionsstillstand Brandgefahr Zerstörung von Anlagenteilen 	 Änderung der Anlagenstruktur Erhöhung der Kurzschlussleistung Kontrolliertes Wegschalten von Anlagenteilen Überwachung auf Überstrom RCMS
Betriebsstrom – Unterstrom	VersorgungsnetzSicherungsausfallDrahtbruch	 Stillstand von Betriebsmitteln Stillstand der Anlage Produktionsausfall Abfallen von Schützen Diverse Funktionsstörungen Motorüberhitzung Brandgefahr Spannungserhöhung (N-Leiter Ausfall) 	 Änderung der Anlagenstruktur Überwachung auf Unterstrom RCMS
Unterbrechung PE-Leiter	 Drahtbruch Fehlerhafte Installation	 Personengefährdung durch Fehlerströme Fehlfunktion von Schutzein- richtungen 	Regelmäßige PrüfungRCMSÜberwachung Strom im PE-Leiter
Harmonische Oberwellen	VersorgungsnetzNichtlineare Verbraucher	 Erwärmung oder Beschädigung von Betriebsmitteln, vor allem Motoren oder Kondensatoren Brandgefahr Spannungsverschiebung Funktionsstörungen 	 Leiterquerschnitt vergrößern Filterung Änderung der Anlagenarchitektur Überwachung des N-Leiters RCMS
lsolationsfehler (Fehlerströme)	 Defekte Isolation durch mechanische, thermische, chemische Einwirkungen Kein Ansprechen von Schutzein- richtungen bei Fehlergleichströmen 	 Stillstand der Anlagen Brandgefahr Personengefährdung Hohe Kosten Fehlsteuerungen EMV-Störungen 	 Wahl der Netzform Richtige Auswahl der Schutzmaßnahmen Regelmäßige Prüfung (BGV A3) RCMS Überwachung auf alle Fehlerstromarten
Vagabundierende Ströme	VersorgungsnetzTN-C SystemeZusätzliche N-PE-Brücken	 Unerklärliche Funktionsstörungen Geräteausfall/-defekte Bildschirmflackern Störungen der EDV Störung von Netzwerken Elektroskorrosion Flektrosmog 	 Anwendung TN-S System Nur ein zentraler Erdungspunkt Umstellung der Netzform Überwachung am zentralen Erdungspunkt RCMS

Anwendungsbeispiele aus der Praxis

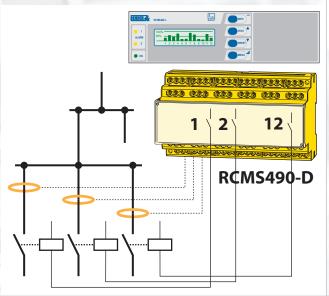
Anwendungsbeispiel 1

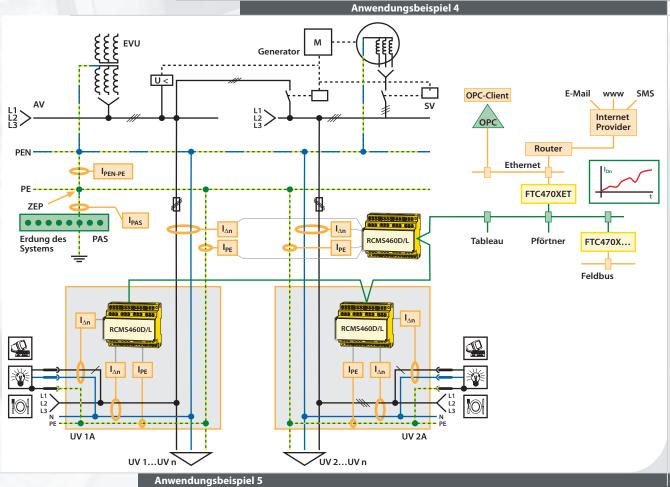

Überwachung eines kleinen TN-S Systems mit bis zu 12 Abgängen, z. B. in Unterverteilungen für PC-Räume, Maschinensteuerungen, Motoren, geregelten Antrieben usw. Jeder Kanal kann mit einem pulsstromsensitiven (Typ W...) oder allstromsensitiven (Typ W...AB) Messstromwandler ausgestattet werden. Für max. 6 W...AB wird ein Netzgerät AN420 benötigt.

Anwendungsbeispiel 2

Überwachung von bis zu 1080 Abgängen, z. B. in Gebäudehauptverteilern von Rechenzentren, Bürogebäuden, Krankenhäusern usw. Überwachung kompletter Verteilungen. Mit zentraler Steuerung und Überwachung über ein Ethernet / TCP/IP-Netzwerk z. B. für Gebäudeleittechnik, Technikzentralen usw. und automatischer Benachrichtung per SMS, E-Mail oder zentralem Tableau.

- Wahlweises kombinieren von puls- oder allstromsensitiven Messstromwandlern
- Beliebige Kombination von RCMS-Gerätevarianten
- Zentrale Bedienung über Grafikdisplay des RCMS4...-D
- Datenaustausch über RS485-Schnittstelle
- Kommunikation über Standard-Feldbus, Ethernet oder OPC


Anwendungsbeispiele aus der Praxis


Anwendungsbeispiel 4

Überwachung einer elektrischen Anlage mit Abschaltung einzelner Abgänge.

Anwendungsbeispiel 5

Kontinuierliche Überwachung des Isolationswiderstandes

Ihre Mehrwert-Vorteile – auf einen Blick

Sicherheit pur – für moderne Stromversorgungen

- Pulsstrom- oder allstromsensitive Überwachung von Fehler-, Differenz- und Betriebsströmen von 6 mA...20 A
- Meldung mit Rekordzeit 1080 Kanäle in 180 ms abfragen und melden
- Echte Effektivwertmessung bis 2 kHz mit Analyse der Harmonischen
- Filterfunktion für Personen-, Brand- und Anlagenschutz
- Permanente Überwachung der Messstromwandler auf Anschlussfehler

Risiken ausschalten – Verfügbarkeit deutlich erhöhen

- Zweistufige Meldung minimiert Brand- und Gefährdungsrisiko
- Optimierte Instandhaltung durch präzise Fehlerort-Information
- Zentrale Administration via LAN-Netzwerk (Ethernet / Internet)

Kosten minimieren – Produktivität steigern

- Geringe Betriebskosten durch Ferndiagnose und Hochverfügbarkeit
- Reduzierter Zeit- und Kostenaufwand für Isolationsmessung bei wiederkehrenden Prüfungen

Aktuelle Betriebzustände – alles auf einen Blick

- Stromwerte aller Kanäle auf einen Blick
- Historienspeicher für 300 Meldungen mit Datum, Uhrzeit, min. und max. Messwerte
- Datenlogger f
 ür 300 Messwerte mit Datum und Uhrzeit pro Kanal
- RCMS460-D/-L Zwei getrennte Sammelkontakte Vorwarnung / Hauptmeldung / Systemfehler
- RCMS490-D/-L Zusätzlich Meldekontakt pro Kanal

Sicherheit auf den Punkt gebracht

- Kein unberechtigter Gerätezugriff durch Passwortschutz
- Sichere Trennung nach DIN EN 61140 / VDE 0140
- Permanente Selbstüberwachung mit automatischer Meldung

Wirtschaftlichkeit erhöhen – 24h-Betrieb sichern

- Permanente Überwachung anstatt stichprobenartiger, manueller Anlagenprüfung
- Teure und ungeplante Anlagenstillstände vermeiden
- Elektronische Dokumentation

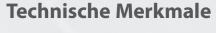
Technische Daten – Bestellangaben – Produktvarianten

Technische Daten im Überblick

Differenzströme/	Allstromsensitiv / 02000 Hz (Typ B nach IEC 60755)	
Bemessungsfrequenz	AC + pulsierende DC / 422000 Hz (Typ A nach IEC 60755)	
Klassifikation nach IEC 60755	Typ B mit Wandler WAB	
	Typ A mit Wandler der Serie W, WR, WS	
Anzahl Messkanäle	12 pro Gerät (1080 Kanäle im System = 90 Geräte)	
Messbereich	030 A Wandler Typ A	
	020 A Wandler Typ AB	
	Crestfaktor bis 10 A = 4, bis 20 A = 2	
Ansprechwert I _{△n1}	6 mA20 A, Typ A; 10 mA10 A, Typ B	
Ansprechwert I _{∆n2}	10100 % I _{∆n1} min. 5 mA	
Anzeigebereich	0 mA30 A, Typ A; 0 mA20 A, Typ B	
Ansprechzeit min.	180 ms (1 x $I_{\Delta n}$), 30 ms (5 x $I_{\Delta n}$) für alle Kanäle	
Historienspeicher	für bis zu 300 Meldungen mit Datum / Uhrzeit	
Datenlogger	300 Messwerte mit Datum / Uhrzeit je Messkanal	
Versorgungsspannung	RCMS401: DC 1694 V AC 42460 Hz 1672 V	
	RCMS402: DC 70276 V AC 42460 Hz 70276 V	

Übersicht Gerätevarianten

Geräte- / Unterscheidungsmerkmale	RCMS460		RCMS490	
	-D	-L	-D	-L
Ansprechwert allstromsensitiv	10 mA10 A	10 mA10 A	10 mA10 A	10 mA10 A
Ansprechwert pulsstromsensitiv	6 mA20 A	6 mA20 A	6 mA20 A	6 mA20 A
Beleuchtetes Grafikdisplay	×		×	
7 -Segment und LED-Zeile		×		×
Parametrierfunktion	×		×	
Anzeige Fehlercode	×	×	×	×
Adressbereich	190	190	190	190
Interne Uhr	×		×	
Historienspeicher	×		×	
Datenlogger	12		12	
Meldekontakt "Sammelalarm" für alle Kanäle	2 x 1 W	2 x 1 W	2 x 1 W	2 x 1 W
Meldekontakt pro Kanal			12 x 1 S	12 x 1 S
Gehäuse	XM460	XM460	XM490	XM490


Produktübersicht

Produktabbildung

Gerätetyp

RCMS460-D

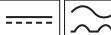
- 12-kanaliges Auswertegerät
- Multifunktionales Grafikdisplay
- 2 getrennte Sammelmeldekontakte (Wechsler)

RCMS460-L

- 12-kanaliges Auswertegerät
- 7-Segment-Anzeige für Geräteadresse
- Melde-LED pro Kanal

RCMS490-D

- 12-kanaliges Auswertegerät
- Multifunktionales Grafikdisplay
- Je Kanal ein Sammelmelderelais (Schließer)

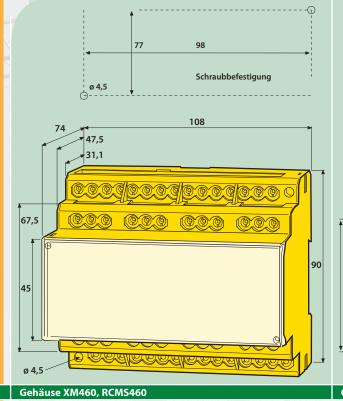


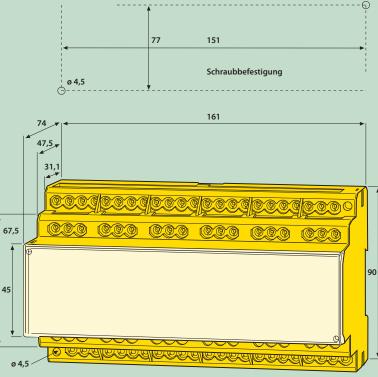
RCMS490-L

- 12-kanaliges Auswertegerät
- 7-Segment-Anzeige für Geräteadresse
- Melde-LED pro Kanal
- Je Kanal 1 Melderelais (Schließer)

W...AB

- Messstromwandler f
 ür allstromsensitive Anwendungen
- Durchmesser 20...210 mm
- Für max. 6 W...AB wird ein Netzteil AN420 benötigt.




W..., WR..., WS...

- Messstromwandler für Wechselströme und pulsierende Gleichströme
- Unterschiedliche Bauformen Rund, rechteckig, teilbar
- Teilbare Wandler für Nachrüstungen

Maßbilder, Maßangaben in mm

70,5 36 47,5 31,1 M4

Gehäuse XM420, AN420 Frontplattenabdeckung in Pfeilrichtung öffnen! Hinweis: Der obere Montageclip ist Zubehör und muss extra bestellt werden.

Bestellangaben

Тур	Beschreibung	Versorgungsspannung*/Abmessungen	ArtNr.
RCMS460-D-1	Differenzstrom-Auswertegerät	DC 1694 V AC 42460 Hz 1672 V	B 9405 3001
RCMS460-D-2	Differenzstrom-Auswertegerät	DC 70276 V AC 42460 Hz 70276 V	B 9405 3002
RCMS460-L-1	Differenzstrom-Auswertegerät	DC 1694 V AC 42460 Hz 1672 V	B 9405 3003
RCMS460-L-2	Differenzstrom-Auswertegerät	DC 70276 V AC 42460 Hz 70276 V	B 9405 3004
RCMS490-D-1	Differenzstrom-Auswertegerät	DC 1694 V AC 42460 Hz 1672 V	B 9405 3005
RCMS490-D-2	Differenzstrom-Auswertegerät	DC 70276 V AC 42460 Hz 70276 V	B 9405 3006
RCMS490-L-1	Differenzstrom-Auswertegerät	DC 1694 V AC 42460 Hz 1672 V	B 9405 3007
RCMS490-L-2	Differenzstrom-Auswertegerät	DC 70276 V AC 42460 Hz 70276 V	B 9405 3008
W20AB	Messstromwandler allstromsensitiv	ø 20 mm	B 9808 0008
W35AB	Messstromwandler allstromsensitiv	ø 35 mm	B 9808 0016
W60AB	Messstromwandler allstromsensitiv	ø 60 mm	B 9808 0026
W120AB	Messstromwandler allstromsensitiv	ø 120 mm	B 9808 0034
W210AB	Messstromwandler allstromsensitiv	ø 210 mm	B 9808 0040
W20	Messstromwandler pulsstromsensitiv, AC	ø 20 mm	B 9808 0003
W35	Messstromwandler pulsstromsensitiv, AC	ø 35 mm	B 9808 0010
W60	Messstromwandler pulsstromsensitiv, AC	ø 60 mm	B 9808 0018
W120	Messstromwandler pulsstromsensitiv, AC	ø 120 mm	B 9808 0028
W210	Messstromwandler pulsstromsensitiv, AC	ø 210 mm	B 9808 0034
WR70x175	Messstromwandler pulsstromsensitiv, AC	Rechteck, 70 x 175 mm (H x B)	B 9808 0609
WR115x305	Messstromwandler pulsstromsensitiv, AC	Rechteck, 115 x 305 mm (H x B)	B 9808 0610
WS20x30	Messstromwandler pulsstromsensitiv, AC	Rechteck, teilbar, 20 x 30 mm (H x B)	B 9808 0601
WS50x80	Messstromwandler pulsstromsensitiv, AC	Rechteck, teilbar, 50 x 80 mm (H x B)	B 9808 0603
WS80x80	Messstromwandler pulsstromsensitiv, AC	Rechteck, teilbar, 80 x 80 mm (H x B)	B 9808 0605
WS80x120	Messstromwandler pulsstromsensitiv, AC	Rechteck, teilbar, 80 x 120 mm (H x B)	B 9808 0606
WS80x160	Messstromwandler pulsstromsensitiv, AC	Rechteck, teilbar, 80 x 160 mm (H x B)	B 9808 0608
FTC470XDP	Protokollumsetzer PROFIBUS DP EN 50170	DC 85276 V 50400 Hz 85276 V	B 9506 1000
FTC470XET	Protokollumsetzer ETHERNET	DC 85276 V 50400 Hz 85276 V	B 9506 1001
FTC470XMB	Protokollumsetzer MODBUS RTU	DC 85276 V 50400 Hz 85276 V	B 9506 1002
AN420-D2	Netzgerät für 6 W AB	DC 70276 V AC 24460 Hz 70276 V	B 9405 3100
WXS-100	Verbindungskabel WAB — RCMS, AN420	1 m Länge	B 9808 0506
WXS-250	Verbindungskabel WAB — RCMS, AN420	2,5 m Länge	B 9808 0507
WXS-500	Verbindungskabel WAB — RCMS, AN420	5 m Länge	B 9808 0508

^{*}Absolutwert

Ihr individuelles Wunschprogramm:

für die elektrische Sicherheit – für jeden Anspruch – für jede Anwendung

Seit mehr als 60 Jahren überwachen innovative Mess- und Überwachungs-Systeme von BENDER Stromversorgungen und melden kritische Betriebszustände in vielen Bereichen

- Stromversorgung von Industrie-, Wohn- und Zweckgebäuden
- Maschinen und Anlagen in Produktionsprozessen
- Anlagen der Energieerzeugung und -verteilung
- Anlagen der Informations- und Kommunikationstechnologie

Elektrische Sicherheit für ungeerdete Stromversorgungen

- Isolationsüberwachungsgeräte A-ISOMETER®
- Isolationsfehler-Suchsysteme EDS
- Erdschlussrelais

Elektrische Sicherheit für geerdete Stromversorgungen

- Differenzstrom-Überwachungsgeräte RCM, RCMA
- Differenzstrom-Überwachungssysteme RCMS
- Für Wechselströme, pulsierende und glatte Gleichströme (allstromsensitiv)

Stromversorgung für medizinisch genutzte Bereiche

- MEDICS®-Umschalt- und Überwachungsmodule für medizinisch genutzte Bereiche nach DIN VDE 0100-710: 2002-11 und IEC 60364-7-710: 2002-11
- · Melde- und Bedientableaus
- · Komplette Verteilungen
- IT-System Transformatoren

Mess- und Überwachungsrelais

- für elektrische Größen: Strom, Spannung, Phasenfolgen, Frequenz usw.
- für spezielle Anwendungen wie Berg- und Tagebau, mobile Stromerzeuger, Schweißroboter, Solaranlagen und vieles mehr

Kommunikationslösungen

- Protokollumsetzer für Standard-Bussysteme (Profibus, Modbus), Protokollumsetzer für Ethernet/TCP/IP
- Visualisierung von Daten über Axeda Wizcon und ActiveX
- · Kommunikation über OPC

Prüfsysteme

- für die elektrische Sicherheit von elektrischen Betriebsmittel und medizinisch technischen Geräten
- Funktionsprüfgeräte für medizinisch technische Geräte
- · Gerätemanagement-Software

Service

- Funktions-Check, EMV-Check, Netzqualitäts-Check
- Elektro-Thermografie, Inbetriebnahme, Wiederholungsprüfungen
- Anlagenabnahme mit anerkannten Sachverständigen, Anlagenbestandsaufnahme / -pflege
- Modernisierung, GLT / Visualisierung, Vor-Ort-Schulung
- · Störungsbeseitigung, Isolationsfehlersuche

Dipl.-Ing. W. Bender GmbH & Co. KG

Postfach 1161 • 35301 Grünberg • Germany Londorfer Straße 65 • 35305 Grünberg • Germany

Tel.: +49(0)6401 / 807-0 • Fax: 807 259

E-Mail: info@bender-de.com • www.bender-de.com

